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ABSTRACT:  Parameter space exploration is a common problem tackled on large-scale computational resources.  
The most common technique, a full combinatorial mesh, is robust but scales poorly to the computational demands of 
complex models with higher dimensional spaces such as those found in the cognitive and behavioral modeling 
community.  To curtail the computational requirements, I have implemented two parallelized intelligent search and 
exploration algorithms, both of which are discussed and compared in this paper. 
 
 
1. Introduction 
 
Research in cognitive science often involves the 
generation and analysis of computational cognitive 
models to explain various aspects of cognition.  Typically 
the behavior of these models various across a continuous 
parameter space composed of a number of theoretically 
motivated parameters, but most commonly we are left to 
our own devices to find the right balance of parsimony 
and fit within that space.  
 
We are certainly not alone. The modeling community 
more generally is already well aware of the challenges 
associated with parameter optimization.  Furthermore, 
there appears to be a growing appreciation of the 
parameter space itself—a qualitative understanding of the 
space can provide valuable insights regarding a model’s 
behavior, optimal parameter ranges, the number of 
optima, and the distance(s) from canonical values. It is 
this deep understanding of the model’s parameter space 
that allows us to find a balance between parsimony, 
optimization and generality (Gluck, Stanley, Moore, 
Reitter & Halbrügge, 2010). However, this is difficult to 
achieve on the computational scale of a workstation, so 
we have turned to high performance computing (HPC) 

clusters and volunteer computing for large-scale 
computational resources.   
 
The majority of applications on the Department of 
Defense HPC clusters focus on solving partial differential 
equations (Post, 2009).  These tend to be lean, fast models 
with little noise.  While we lack specific data regarding 
typical job sizes and durations, HPC maintenance is 
regularly scheduled at two-week intervals, so it seems 
reasonable to assume that most jobs fit within this 
window. 
 
In contrast to HPC applications, volunteer computing 
projects tend to involve singularly specific, highly 
parallelizable tasks crunching vast quantities of data over 
time spans measured in months and years, such as 
SETI@home’s analysis of interstellar radio signals and 
Folding@home’s studies of protein folding.  Both of these 
examples run on a common software framework called 
the Berkeley Open Infrastructure for Network Computing 
(BOINC), which enables volunteers to donate idle time 
from their computational resources to projects of their 
choice.  The volunteer computing application developed 
by my colleagues is called MindModeling@Home, and it 
too runs on the BOINC infrastructure (Harris, Gluck, 
Mielke & Moore, 2009).  Projects that work well with 
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BOINC tend to be long lasting and can tolerate latencies 
measured in days, which happen quite commonly when 
volunteer resources are interrupted or retasked.   
 
Cognitive models fit somewhere between these two 
extremes.  Our models are computationally expensive and 
produce stochastic results, quite unlike the partial 
differential equations typically solved on HPC clusters.  
And unlike most of the BOINC projects, we strive to 
analyze many different models with vastly differing 
performance characteristics within a calendar year.  Our 
unique requirements present new methodological 
challenges for both HPC and volunteer resources.  This 
paper describes some of the methodologies we have 
explored, the trade space among them, and my latest 
research efforts to apply HPC and volunteer resources to 
characterize and search parameter spaces. 
 
2. Meshing 
 
In its simplest form, “meshing” involves the construction 
of an n-dimensional grid by iterating through each 
parameter range by a fixed interval, and capturing the 
combinatorics to be used as the basis of model runs.  The 
resulting simple orthogonal grid seems to suffice for most 
of our cognitive models.  
 
Once the mesh is defined, portions can be distributed 
amongst computational nodes and executed completely 
independently.  Meshing has been widely used for many 
years (Chen & Taylor, 1998) and it lends itself well to 
both HPC and volunteer resources.  The complete 
independence among computational nodes affords the 
ultimate in “embarrassingly parallel”—a term commonly 
used to describe computational tasks that can be 
efficiently executed with little or no serial operations.  
Parallelizability is the key to realizing the full potential of 
large-scale computational resources. 
 
Full combinatorial meshes have other advantages, as well.  
For example, there is little software overhead in 
computing these meshes (at least for our relatively simple 
requirements) and the corresponding job files for the HPC 
schedulers.  For volunteer resources, my colleagues have 
developed a web interface specifically for this purpose 
with plans to make it available as a community resource 
(Harris et al, 2009). 
 
Combinatorial meshes are also flexible.  No assumptions 
are made about the structure or even the continuity of the 
parameter space.  The data can be stored in any format 
convenient for the modeler to analyze.  Analysis is 
straightforward, and the results can be visualized or 
mined indefinitely, within the limits of precision defined 
by the original mesh. 
 

Another point to consider about full combinatorial meshes 
is that counting the results files quickly reveals the 
success of the jobs; one result should be present for every 
parameter combination.  While we might shrug off a 
failure on our desktop as a 1 in a million fluke, when 
running models millions of times this seemingly 
innocuous failure rate becomes noticeable, and quick 
methods to detect and recover are desirable—in this case 
the modeler can simply rerun the specific mesh nodes that 
failed to produce results files. 
 
How do full combinatorial meshes fare with cognitive 
models?  In one research effort, we have developed a 
model that performs a Digit Symbol Substitution Task 
(DSST) (Moore, Gunzelmann & Gluck, 2008).  This is a 
simple task where the model is presented with 9 digit / 
symbol pairs, and when prompted with a symbol the 
model responds with the appropriate digit.  This fairly 
typical cognitive model has 7 relevant quantitative 
parameters and due to stochasticity must be resampled at 
least 10 times to establish a reliable measure of central 
tendency.  With an average run time of 2 minutes, a mesh 
with 10 increments per variable would require 271 days to 
compute if run continuously on 512 cores.  A 
computational challenge of this magnitude would 
overwhelm any computational resource for quite some 
time, and as mentioned previously there is some desire to 
analyze more than one model per calendar year. 
 
There are primarily two issues that drive the 
computational demands of the DSST.  First, the 7 
parameters exhibit the “curse of dimensionality”—a 
phrase used to describe the exponential requirements of 
additional parameters in a space (Bellman, 1961).  After 
examining the parameter space and understanding the 
interrelationships, dimensionality can often be reduced, 
but not until after an initial analysis is completed. 
 
The second primary issue contributing to the 
computational requirements is the 2-minute run time 
required for each node in the parameter space.  The DSST 
is a learning model—its behavior changes across sessions 
as it gains knowledge and experience.  Therefore, to 
properly compare learning characteristics with human 
subjects, the entire learning curve must be constructed at 
each parameter combination across all sessions.  
Considering that, in this case, the model is performing the 
task across 32 sessions (96 simulative minutes), 2 minute 
run times seem quite reasonable. 
 
Recognizing that large-scale computational resources can 
only take us so far, we have turned our attention to 
intelligent exploration and search strategies that run on 
both HPC and volunteer resources.  Our interests are 
specifically focused on approaches that allow searching a 
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parameter space for optimal values, as well as 
characterizing the overall space in general. 
 
3. Adaptive Mesh Refinement 
 
Adaptive mesh refinement (AMR) is an intelligent search 
strategy that dynamically divides the overall search space 
into subcubes of varying size, each of which is capable of 
making predictions about measures in its local area of 
space to a predefined degree of accuracy (Berger & 
Oliger, 1984).   
 
My parallelized implementation of AMR is called Quick, 
and it consists of about 11,000 lines of C++ code.  The 
code has been ported to several HPC clusters, as well as 
our BOINC-based MindModeling volunteer computing 
system. 
 
Implementing AMR—or any intelligent algorithm, for 
that matter—on large-scale computational resources 
requires a serious engineering investment.  The software 
needs to be robust enough to recover from faults 
throughout the system—including models under 
evaluation-- and it needs to be reliable enough to run for 
hundreds or thousands of hours without memory leaks, 
crashing, etc.   
 
To initiate an AMR using Quick, the modeler begins by 
defining the independent variables, their ranges, and the 
increment for each.  The increment is identical to the 
increment used when constructing a full combinatorial 
mesh—although hypercubes produced by an AMR may 
span large portions of space, their boundaries are always 
constrained to the implicit grid lines defined by the 
increment.  The hypercubes never overlap, and the sum of 
their volumes equals that of the parameter space overall. 
 
The user also specifies the dependent measures that the 
model will produce, as well as a threshold value for each.  
The threshold is an important consideration, because 
ultimately it will constrain how accurate the results will 
be.  
 
Once configured, the procedure to execute Quick varies 
between HPC and MindModeling.  Running software on 
HPC resources is accomplished through “job” 
submissions.  A job is defined through a simple shell 
script that describes the requested computational 
resources and the software to run.  Jobs are submitted to a 
dedicated scheduler that executes the software when the 
requested resources become available.  Quick begins with 
a single job that requests a single computer.  As the AMR 
progresses, Quick will automatically schedule more jobs 
to run in parallel as aggressively as possible. 
 

On MindModeling things behave quite differently.  In this 
case, Quick is automatically executed on the servers at 
periodic intervals to determine which points in the 
parameter space need to be computed for the AMR.  As 
volunteers request work, they are provided with these 
points to compute, and as they return results and the AMR 
progresses new points will be generated by Quick.  Thus, 
parallelization is achieved at the level of sample 
acquisition. 
 
Regardless of the computational context, the AMR 
methodology is the same.  Quick begins by treating the 
entire parameter space as a single large single hypercube.  
The process begins by executing the model with 
parameter values at each of the corner points.  AMR 
assumes that measurements are accurate, so we typically 
resample the model a fixed number of times and collapse 
across the dependent measures to remove stochasticity.  
In any n dimensional space, there will be 2n corners to 
sample. 
 
In addition to the corner points, the center of the cube is 
measured as well.  (As with all nodes considered in the 
space, the center is constrained to the specified grid, so it 
may not reflect the precise mathematical center.)  In 
addition to measuring the center, Quick will also make a 
mathematical prediction of the center, assuming that the 
model’s behavior changes smoothly across the parameter 
space, yet accounting for twisting that can occur.  If the 
difference between the measured value and the predicted 
value is within the specified threshold for each dependent 
measure, then the hypercube is considered smooth and 
predictable, and the process is complete.  However, if any 
of the dependent measures exceed the threshold, the 
hypercube is divided into 2n subcubes about the center 
point, and each subcube is analyzed using the same 
process just described.   
 
When hypercubes split into subcubes, each subcube can 
be treated as a parameter space in its own right, albeit 
smaller than the true overall space.  This is the key to 
parallelizing AMR on HPC resources, as the analysis of 
each subcube can be scheduled as an independent HPC 
job.   Aside from the shape of the parameter space, these 
new jobs are identical to the original that started the 
analysis. 
  
AMR can result in substantial computational savings, yet 
the quantitative quality of the results typically remains 
high (Best et al, 2009).  The quality of the results is 
consistent across the space, too, so unmeasured points can 
be interpolated and the resulting grid can be mined just as 
a full combinatorial mesh.  Further, because the space is 
mathematically defined, off-grid interpolation can also be 
calculated if desired.  There is also something to be said 
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for the reduction in data that needs to be transferred to the 
workstation for analysis.   
 
Nevertheless, AMR does have its drawbacks.  First, the 
computational savings with AMR are unpredictable.  This 
is also consistent with the Best et al (2009) work, which 
showed that AMR efficiency was heavily influence by 
threshold and implementation factors that can be difficult 
to predict a-priori.  Furthermore, the structure of the 
space, (which in turn depends on the parameters and their 
relationships) and the number of dependent measures can 
also heavily influence AMR efficiency.  In my experience 
with our models, it is not uncommon for an AMR to 
compute nearly all the nodes in the space, resulting in 
little savings. 
 
Recall that AMR must evaluate the corners and center of 
each hypercube before it can move forward.  In a 
volunteer environment such as MindModeling, this can be 
problematic because of the large latencies.  At any 
moment, a volunteer might turn off their computer, or use 
it for something else, and processing is stalled until an 
explicit timeout is reached, which is usually at least a day.  
So while volunteer networks provide huge computational 
power, they are a poor match for the methodological 
requirements of AMR. 
 
AMR on HPC suffers for different reasons, but with 
similar effects.  In this case, parallelization is not usually 
the problem, but each parallel analysis requires a new 
HPC job to be scheduled.  HPC schedulers vary in 
reliability and performance—which is in itself 
problematic for AMR—but they all share a first-in-first-
out paradigm, so new jobs must wait for resources to be 
made available from jobs scheduled prior.  A simple 3-
dimensional parameter space with 8 divisions per 
parameter could potentially result in millions of job 
submissions, each with its own wait time in the job queue.  
 
To test how many submissions are actually made, and 
their impact on the overall wall clock time, I ran six 
adaptive meshes on the Jaws high performance computing 
cluster in Maui using a model of the Psychomotor 
Vigilance Task (PVT).  The PVT is a simple model that 
simulates a button press when a visual stimulus is 
presented at random time intervals (Gunzelmann, Gross, 
Gluck & Dinges, 2009).  Two variants of this model were 
tested, and each was run using three different values for 
the threshold that controls the likelihood of searching 
deeper into the parameter space.  All six meshes explored 
the same three-parameter space.   
 
The mean number of HPC jobs submitted was 577.  The 
average run time for each job was 2 minutes, and the 
average wait time in the scheduler queue was 5.9 minutes.  
One must be cautious when interpreting these results due 

to the small sample size and large variation in HPC usage, 
but in this case the mean wait time was nearly 3x longer 
than the mean run time per job. 
 
Although AMR is more computationally efficient than a 
full combinatorial mesh on large-scale resources, it can be 
slower in terms of wall clock time.  If you recall, our 
original motivation for combining intelligent search and 
exploration with large-scale computational resources was 
to improve analytical capacity with cognitive models, yet 
AMR does not consistently deliver. 
 
Despite its shortcomings, AMR has clearly demonstrated 
that combining intelligent search with HPC and volunteer 
resources is indeed possible.  My most recent research re-
imagines optimized search specifically for the context of 
cognitive models on parallel computational resources. 
 
4. Regression Trees 
 
Recognizing that parallelization is the key to fully 
leveraging HPC and volunteer resources, I have 
developed a flexible stochastic search methodology that 
allows massive parallelization with virtually no 
interdependencies. Furthermore, recognizing the necessity 
for qualitatively understanding the parameter space, I 
have also developed accompanying visualization software 
that operates in real time as the space is constructed.  The 
visualization software is called Hurricane, while the 
intelligent search software is called Cell. 
 
Hurricane and Cell are written in Objective C, and at 
5300 lines combined they are about half the size of Quick, 
testifying to their relative simplicity.  They were 
developed on Mac OS X, and Cell specifically has been 
ported to Linux to support HPC and MindModeling 
integration.  At this time Cell has been successfully ported 
and tested on four different HPC clusters, with 
MindModeling integration underway. 
 
As was the case with Quick, Cell and Hurricane begin 
with a user-specified configuration including independent 
variables, their ranges and increment, and the dependent 
measures.  In contrast to the AMR configuration for 
Quick, no threshold is required. 
 
Like all software run on the HPC, Cell is executed 
through a job submission. However, because Cell is 
immediately parallelizable any number of job submissions 
can be made during startup.  Typically I limit myself to 
128 jobs, mostly to avoid complaints from other HPC 
users.   
 
On MindModeling, a single instance of Cell runs on the 
server for the duration of a model run.  This “listener” 
process analyzes incoming data, and upon request, 
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generates lists of points that are distributed to volunteer 
resources as they request work.  Like Quick, Cell 
achieves parallelization on MindModeling by distributing 
model runs to volunteer resources. 
 
Cell can analyze the parameter space in either of two 
ways: exploration or searching.  Both approaches divide 
the space into a set of hypercubes that are geometrically 
analogous to AMR. However, rather than sampling just 
corners and the center, Cell samples stochastically within 
the hypercube space and calculates the best fitting 
hyperplane for each dependent measure—an analytical 
approach sometimes referred to as a regression tree 
(Alexander & Grimshaw, 1996). 
 
Regardless of whether Cell is searching or exploring, it 
tries to maintain a consistent sample density among the 
hypercubes, regardless of size.  This means that areas of 
the space with higher sampling will have greater numbers 
of hypercube divisions.  The minimum number of 
samples targeted for each hypercube is based on the work 
of Knofcyznski and Mundfrom (2008), which suggests a 
linear relationship between the number of samples 
required to make a good regression prediction and the 
dimensionality of the space.  It is not until a hypercube 
contains 2x this amount does it split along its longest 
dimension.  Within the confines of a single hypercube 
sampling is uniform, so the split should roughly divide the 
samples equally between both subcubes. 
 
The key distinction between Cell’s two analytical 
approaches lies in the way they construct their sampling 
distribution.  The exploration approach performs a 
characterization of the space—in this case the sampling 
distribution is positively correlated with the residual 
variation in each hypercube.  Unexplained variation is 
presumably the result of noise or a poor regression fit, and 
in either case it is prudent to sample more, and potentially 
to subdivide more, to resolve the ambiguity.  In this 
mode, the exploration process has no definitive end and 
runs as long as the modeler desires. 
 
In truth, I rarely use exploration mode because our work 
typically involves parameter optimization as well as 
characterization, and search mode provides both.  In this 
case, the user supplies additional configuration 
information consisting of dependent measure “target 
goals” to search for.  In terms of cognitive modeling, this 
typically takes the form of human data.  When supplied, 
the sampling distribution is skewed towards hypercubes 
with the lowest deviation from the human data (or 
whatever target goals are supplied), and so the space 
winds up being more intricately constructed in those 
areas.  The search is considered complete when the best 
fitting hypercube cannot divide any more based on the 
constraining grid.  

 
With data in hand (or even while it is being obtained in 
the case of running on local resources), Hurricane can be 
used to visualize the results, as is shown in Figure 1.  
Hurricane conducts the same analysis that Cell does, and 
produces the regression tree in the form of a 3D graph.  
Any two independent measures can be selected for the x 
and z-axis, and any dependent measure can be selected for 
the y-axis (vertical).  The remaining independent 
measures can be manipulated in real time via sliders, 
which provides a convenient mechanism to grasp an 
otherwise esoteric hyperdimensional space.  Hurricane 
can also scan the space for optimal parameter values or 
make predictions, which can then be imported into more 
generalized analytical tools like R or SPSS.  
 

 
 
Figure 1. Hurricane visualization of a PVT parameter 
space. The vertical axis represents RMSD between human 
measures and the model, while the other two axes 
represent independent variables.  A third independent 
variable can be manipulated with the slider. Best fitting 
parameter values are located within the trench area, which 
received more samples and therefore is more finely 
subdivided.   
 
 
Searches conducted with Cell provide large computational 
advantages over AMR and full combinatorial meshes.  
This is primarily because vast sections of the space—
those areas that are distant from target areas of interest—
are only lightly sampled and mostly ignored once deemed 
suboptimal.  As an example, I ran the PVT model through 
a full combinatorial mesh, an AMR with Quick, and a 
regression tree analysis with Cell.  Identical grid slicing 
was used for all three, and they were all run on the same 
Mana HPC cluster in Maui.  
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Figure 2 shows the number of model runs required to 
complete an analysis of the parameter space for each 
methodology.  In this example, the AMR—although it 
was configured with a liberal 5% threshold—wound up 
sampling most of the space anyway, while the Cell 
required two orders of magnitude fewer model runs. 
 

 
Figure 2. Comparison of computational requirements for 
each of the three methodologies discussed. 
 
The amount of time required to complete the analyses is 
shown in Figure 3.  Note that the AMR took 4.2 times 
longer than the full combinatorial mesh, which is almost 
exactly what would be expected if queue wait times were 
3x the run time as discussed above. Because Cell 
parallelizes immediately upon startup and does not auto-
schedule new jobs like Quick, most of the scheduling 
queue delays are avoided.  For more complex searches 
that fail to complete within the scheduled amount time, I 
can simply reschedule more jobs, and each Cell instance 
will read the samples acquired previously from disk, and 
pick up where the older Cell instances left off.   
 

 
Figure 3. Comparison of wall clock time required to 
analyze the PVT parameter space using the three 
methodologies. 
 
Speed and efficiency are important, but they are only 
useful if the resulting analysis is viable.  Figure 4 
compares the optimized parameter predictions from each 
of the three methodologies.  To produce this table, I reran 

the model at the predicted optimal parameter values and 
computed an RMSD against the human data for each 
methodology.  The model was run 100x to reduce noise—
the same amount used during the AMR and full 
combinatorial runs.  As expected, the full combinatorial 
mesh produced the best results.  It was surprising to see 
that the regression tree methodology edged out AMR, but 
this is likely caused by variation in the model’s 
performance. 
 

 
Figure 4. RMSD between best fitting parameter 
predictions and human data. 
 
Many of the issues challenging parallelized AMR 
disappear in the context of regression tree exploration and 
searching.  This is because Cell does not base decisions 
upon the outcome of specific, accurate, grid-constrained 
samples.  Rather, the decisions are based on statistical 
analysis of a set of distributed, stochastic samples.  As a 
result, any number of Cell instances can be started at once 
and run in parallel, each making its own decision about 
how to divide the space and where to sample.   
 
Although the integration remains a work in progress, I 
expect that Cell will work well with volunteer resources.  
In this case AMR was stalled waiting for specific points 
to complete, but Cell, with its semi-random sampling 
strategy, can always generate work for volunteers. 
However, we will need to be careful to limit the number 
of outstanding points being computed at any given time. 
The end result of too many outstanding samples could be 
hundreds or thousands more samples in a hypercube than 
is really necessary to make a search decision.   The extra 
data would still be useful for visualization purposes, but it 
would reduce the efficiency of searching. 
 
In my ongoing efforts to combine intelligent search and 
exploration with large-scale computational resources,  
Hurricane and Cell represent best results to date.  
Nevertheless, they present their own new challenges.  For 
example, the confidence of predictions based on 
discontinuous regression planes is inconsistent, and 
highly dependent upon the distance from the center of the 
hypercube. Predictions across the boundary of two 
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discontinuous hyperplanes can be disturbingly disparate 
compared to neighboring predictions.  This not only 
makes visualization less appealing, but data mining 
outside of specified search goals can be problematic. 
 
From an implementation perspective, Cell is more 
computationally intensive than AMR and full 
combinatorial meshes.  Every incoming sample requires a 
search to determine its encompassing hypercube, and the 
introduction of new data into the hypercube will require 
the calculation of new regressions.  To maintain pace with 
the incoming data stream, results must be stored in RAM 
rather than disk-based storage, which limits scalability.  
The number of samples that can be maintained in a fixed 
amount of RAM depends upon the amount of memory 
required to store a sample, which includes values for the 
independent measures, dependent measures, and search 
targets specified. 
 
Even with in-memory data management, however, the 
number of regressions required can still be 
computationally challenging.  For example, the DSST 
model mentioned earlier captures 9 measures across 32 
sessions, amounting to 218 total independent measures, 
each maintaining its own regression tree.  Hurricane 
requires about 5 hours to read in the data from this model 
and reconstruct the regression trees for visualization, 
which seems excessive, to say the least. 
 
Despite these limitations, the regression trees seem to be 
another step in the right direction.  Using Cell, our 
cognitive models scale well on HPC resources from both 
computational and wall clock time perspectives.   Some of 
our faster cognitive models, in fact, can now be analyzed 
in a few hours on local resources, which avails large- 
scale computational resources for even more complex 
models.  Additionally, Hurricane’s multidimensional 
visualization capability has become an indispensible part 
of my normal workflow. 
 
4. Discussion  
 
In a broad sense, the engineering problem being 
addressed is one of computational performance and 
efficiency.  Large-scale computational resources take us 
part of the way, and the remaining effort is incumbent 
upon us, as the resource users. 
 
In the world of software engineering, there is a basic rule 
to optimization: focus on the innermost loop.  In the 
context of this discussion, we have a parameter 
exploration / search methodology exercising a cognitive 
model, and it is the model itself that constitutes the bulk 
of processing in the innermost loop.   
 

The model and its implementation are the embodiment of 
a theory, however, and this can severely constrain 
optimization options.  This is certainly the case for my 
colleagues and I, where our models are based on a 
publicly available cognitive architecture (ACT-R; 
Anderson, 2007) that is shared among a relatively large 
scientific community.  In our case, we routinely share 
models to combine and test different cognitive 
moderators, and it is important to maintain a consistent 
architecture across the community. 
 
Therefore, we optimize our inner loop not by changing 
code, but by reducing the number of model runs as much 
as possible. AMR does this well and is used successfully 
in some contexts, but it appears, however, that the full 
utility of AMR does not necessarily transfer across 
domains and contexts.  As cognitive and behavioral 
modelers begin to leverage large-scale computational 
resources, we must also develop suitable parallel search 
and exploration algorithms for our models. 
 
This paper described our recent efforts using regression 
tree predictions to drive sampling distributions, and 
ultimately hypercube division.  Like AMR, the technique 
reduces computational demands through a reduction in 
model runs, but the nature of the approach seems to be 
more agreeable to parallelization.   
 
Regression trees, however, are not the only option.  The 
dynamics of Cell are driven by two governing principles: 
1) Sample more in areas of interest and 2) subdivide more 
in areas of higher density.  The regression trees are used 
to determine the areas of interest, but other predictive 
analytical techniques can be substituted without 
compromising the fundamental approach.  Multivariate 
adaptive regression splines (MARS) are one interesting 
possibility (Friedman, 1991). 
 
However, models like the DSST have demonstrated that 
the computational demands of the analytical technique are 
becoming a serious consideration.  While I predict that 
MARS will be more efficient than regression trees in 
terms of reducing the required number of model runs, I 
also expect that the analytical processing requirements 
will be significantly more demanding.  It seems a trade 
space is becoming apparent between the computational 
demands of the model versus the computational demands 
of the search / exploration algorithm.  For us this is not 
necessarily a bad trade space, because it is much less 
problematic to optimize a methodology as opposed to a 
theory, and there remain many opportunities to do so.   
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